Unraveling Reality {9-10} Entanglement

Entanglement

That one body may act upon another at a distance through a vacuum, without the mediation of anything else, by and through which their action and force may be conveyed from one to another, is to me so great an absurdity that I believe no man who has in philosophical matters a competent faculty of thinking can ever fall into it. ~ Isaac Newton

Basic notions in physics depend upon a time continuum: cause preceding effect. The principle of locality must exist for cause and effect to work. If causality is kicked aside, such as with simultaneous (“spooky”) action at a distance, locality is violated. With nonlocality a well-established fact, quantum entanglement has repeatedly been demonstrated.

The fundamental properties of chemistry rely upon entanglement. Solids form, and retain their solidity, via quantum entanglement of the electrons in the material. Superconductivity works through entangled electron pairs.

Superluminal communication presents a challenge to theoretical physics that has not been resolved. It is a dilemma that can never be met by insisting upon the universe as a 4D closed system; an axiom of which Newton and Einstein were so confident, but simply is not so.

A practical pointer to time as an emergent property occurs by entangling particles that don’t exist at the same time. In other words, nonlocality can also be nontemporal.

A scheme termed entanglement swapping – chaining entanglement through time between subatomic particle pairs – has been demonstrated, using 4 photons.

Entanglement demonstrates that time, as well as space, is emergent: constantly coming into being, as contrasted to preexisting and incrementally evolving, as it appears to us.

“Space and time will end up being emergent concepts; i.e. they will not be present in the fundamental formulation of the theory and will appear as approximate semiclassical notions in the macroscopic world.” ~ Israeli physicist Nathan Seiberg